PowerShell App Deployment Toolkit

PowerShell App Deployment Toolkit

Over the years of Intune deployments, I have searched for a way to let my end users know that an application is being installed or uninstalled from their computer. I have used things ranging from notification bubbles to blanking a screen. All of these methodologies are poor at best. I found a few paid items that companies just didn’t want to pay for due to the insanity of the pricing. For example, one company wanted us to pay 150 USD per deployment. Times that by 1500 devices, that adds up quickly. It wasn’t until I found the PowerShell App Deployment Toolkit that I found what I was finally looking for.

What is the PowerShell App Deployment Toolkit?

This toolkit is an immensely powerful and amazingly simple setup. You can download the tool kit here. It provides a framework to install and uninstall applications using PowerShell through a signed application. This allows us to deploy complex and confusing deployments as a single package. A good example would be AutoCAD. Recently, I was tasked with standardizing AutoCAD in a single department. Some members used AutoCAD 2016, some used 2024. This was a problem as the 2024 files did not work with the 2016 AutoCAD. Thus, I needed to uninstall the previous versions of AutoCAD before I installed the current version. As all files are backed up, I didn’t have to worry about them losing any files. The toolkit was perfect for this.

Key items I like of the toolkit

Simple packaging

Many application toolkits come with complex packaging. It’s normally an application that wraps itself around another application that keeps doing this until it’s all transparent. With the PowerShell App Deployment Toolkit, all you need to interact with is the deploy-application.ps1 file. That’s assuming you are doing more than an a MSI file. If you are only using an MSI file, all you need to do is drop the file in.

As you can see in the screen shot, this is the package. When you download the zip file, you will be greeted with this amazing structure. The Deploy-Application.ps1 is where our code will go. The Files folder is where the installer files would go. Following our auto cad example, the installer and updates would all be placed inside the Files folder.

Deploy-Application.ps1

This file has an amazing setup. It first has a wall of documentation inside the file itself. The file explains each step along the way. It is broken up into installation, uninstallation, and repair. Each section has a Pre, during and post process in each section. This is great if you need to kill some services, send a message or more. It’s also helpful because it gives you a structure to work within.

The Commands

Inside this packaging there are many useful commands. As I stated in the intro, it’s full of ways to communicate what you are doing with the end user. During an application install, you can show which applications needs to be turned off for the install to work by using the show-installationwelcome command.

Show-InstallationWelcome -CloseApps 'acad,adSSO,AutodeskDesktopApp,AdAppMgrSvc,AdskLicensingService,AdskLicensingAgent,FNPLicensingService' -CloseAppsCountdown 60

This example shows us it wants to close the applications and gives the user a 60 second window to do so. This isn’t the only thing this command can do.

SYNTAX
    Show-InstallationWelcome [-CloseApps <String>] [-Silent] [-CloseAppsCountdown <Int32>] [-ForceCloseAppsCountdown 
    <Int32>] [-PromptToSave] [-PersistPrompt] [-BlockExecution] [-AllowDefer] [-AllowDeferCloseApps] [-DeferTimes 
    <Int32>] [-DeferDays <Int32>] [-DeferDeadline <String>] [-MinimizeWindows <Boolean>] [-TopMost <Boolean>] 
    [-ForceCountdown <Int32>] [-CustomText] [<CommonParameters>]
    
    Show-InstallationWelcome [-CloseApps <String>] [-Silent] [-CloseAppsCountdown <Int32>] [-ForceCloseAppsCountdown 
    <Int32>] [-PromptToSave] [-PersistPrompt] [-BlockExecution] [-AllowDefer] [-AllowDeferCloseApps] [-DeferTimes 
    <Int32>] [-DeferDays <Int32>] [-DeferDeadline <String>] -CheckDiskSpace [-RequiredDiskSpace <Int32>] 
    [-MinimizeWindows <Boolean>] [-TopMost <Boolean>] [-ForceCountdown <Int32>] [-CustomText] [<CommonParameters>]

Other commands like execute-process, will launch processes that you need from the file directory and more. All while logging what’s going on. You can find a full help system for all the unique commands inside the tool kit. Navigate to the tool kit > AppDeployToolkit > AppDeployToolkithelp.ps1 will bring up a gui that allows you to read all about the commands.

Using the Toolkit with Intune

If you want the tool kit to work with the end user profile, then you will need to grab a unique little tool from MDT. We will need the ServiceUI.exe from the MDT software. You can download MDT here. Once you have the MDT installed. we need to pull the ServiceUI.exe out of the MDT install. Navigate to, C:\Program Files\Microsoft Deployment Toolkit\Templates\Distribution\Tools\x64 and copy the ServiceUI.exe file. Place this file in the home of your PowerShell App Deployment Toolkit file structure.

As you can see, the ServiceUI.exe is in the root folder. Now we need to create the package. We can create a win32 app package. I covered this here. This is the same concept.

  • The folder would be the folder with your toolkit
  • The setup file would be the Deploy-Application.exe
  • The output file would be wherever you want the Intune app to be dumped.
  • and we don’t need to catalog the folder.

Once you have your application built, it’s time to see how it works inside Intune. We start by building your application package. As stated in the previous blog, we start the application by uploading. The big difference here is our install and uninstall commands.

Understanding the commands

Our install command will be the using the ServiceUI.exe and the deploy-application.exe

  • Install: ServiceUI.exe -process:explorer.exe Deploy-Application.exe
  • Uninstall: ServiceUI.exe -process:explorer.exe Deploy-Application.exe -DeploymentType “Uninstall” -DeployMode “Interactive”

By default, the Deploy-application.exe will be interactive. There are two flags for the Deploy-Application and here are what they are.

  • DeploymentType: (Super Straight forward)
    • Install: Installs the application
    • Uninstall: Uninstalls the application
    • Repair: repairs the application.
  • DeployMode:
    • Interactive: Shows all of the prompts needed.
    • NonInteractive: Only shows the required prompts.
    • Silent: Shows no prompts.

We can translate the command above by using these flags. By default the Deploy-application.exe is install and interactive. So, we know that the application would be prompted and the end user will see the command. The uninstall command will uninstall and it will be interactive. The ServiceUI.exe allows you to run applications as the user in and the system at the same time. The biggest issue with the ServiceUI.exe is the application will not install until someone logs in. No flags are needed here.

Over all, PSappdeploytoolkit changes the ball game with deployments. I encourage anyone and everyone to dig deeper into it.

What can we learn as a person today?

I live in the south of United states. From time to time I will hear people battling over belief systems. In my life time I have come to an understanding of how these systems work. I liken “objective truth” as fish in a sea. Our belief systems is the net we use to capture those fish. Some nets are better than others. The water of the sea is useless, distracting, or misinformation. It only makes it harder to bring those pieces of the objective truth into ourselves. A good net can capture a lot of fish, and let the water out at the same time. A bad net, like a tarp, captures some but becomes unmanageable due to the water. This is the same way with our beliefs. We are only strong enough to lift so much at different points in our lives.

Premade Nets

I see organized religions as premade nets. Think of it like a tool kit. It’s a format that is easy to use and allows you to do stuff with it. Does the toolkit work for everyone, no. Just like this PowerShell toolkit, it would be useless in a world without powershell. So chromeOS, this toolkit isn’t useful. This is the same with some beliefs. They are useful where they are, but not useful in other places. Sometimes these toolkits/nets, are useful for some but not others. If you don’t know PowerShell, this toolkit wouldn’t be useful to you. If you are shame sensitive, some religions are not for you.

Everyone has their own tool set or net. No single tool set is inherently bad. It’s how we use them and where we use them. If you take a net to a small pond, get ready to waste your time and damage your net. If you throw your net aggressively into a aggressive sea, get ready to lose that net.

Homemade Nets

Once someone understands how the nets are made and how to repair them, It’s always best for them to start building their own nets using the techniques they have used on their previous nets. By having a net/toolset of your own, this allows you to have full knowledge and be able to repair quickly. This belief system would be uniquely yours and different from others. So, when it breaks, you can grow it, replace parts, and more without having any problems. It’s yours and no one elses.

Let’s build our own beliefs.

General Uninstaller for Intune

General Uninstaller for Intune

This past month I was given a task to Uninstall a few applications in Intune. However, the app’s uninstall feature did not work according to plan. However, a bunch of these worked with the cim methods of uninstall. Which I thought was funny. After writing a bunch of the same code over and over again, I decided to write a General Uninstaller for Intune. This also requires a custom Detection Script.

The General Uninstaller Script

param (
    [string[]]$ProductNames
)
$Products = Get-CimInstance -ClassName win32_Product
foreach ($Product in $ProductNames) {
    if ($null -eq ($Products | where-object {$_.name -like "$Product"})) {
        write-host "Success"
        exit 1212
    } else {
        #Grabs the install Location
        $InstallLocation = ($Products | where-object {$_.name -like "Product"}).InstallLocation

        #Uninstalls the product in question
        $Products | where-object {$_.name -like "Product"} | Invoke-CimMethod -MethodName uninstall
        
        if ($Null -ne $InstallLocation) {
            foreach ($Location in $InstallLocation) {
                if (Test-Path $Location) {
                    Remove-Item -Path $Location -Force -Recurse
                }
            }
        }
        exit 1212
    }
}

Here we have a general uninstaller for Intune. This script allows us to feed the product name as is or we can add wild cards to the name. We start off the script by grabbing the product names from the user. This will be done during the intune setup. When it deploys, the first thing this script does is grab all the applications inside the win32_product. If the application didn’t register in this windows system, then this script is going to be pointless for you.

Once we have the products, we go through each Product Name. We first check to see if the product is on the system. If it isn’t, we output success and exit with a unique exit code. This will be used later. However, if the product is on the machine, we grab the install location. Then we pipe the product into the uninstall method in the cim method command. Finally, we see if the install location exists inside the installed object. Some applications give us this information some don’t. Some give us multiple locations while others don’t.

To work around this, we check if install location property is null. If it isn’t null, then we move on and start a loop. The loop is only because some install locations have more than one location. Then we test if the file path still exists. Sometimes, the applications uninstaller will remove the folder, sometimes, it doesn’t and that’s why we test. If the file location is there still, we remove it with a good old force and recurse. Finally, we exit with the unique exit code.

The General Uninstall Detection Script

$ProductNames = "ProductName","Product2Name"
$Products = Get-CimInstance -ClassName win32_Product
foreach ($Product in $ProductNames) {
    if ($null -ne ($Products | where-object {$_.name -like "$Product"})) {    
        exit 1
    } 
}
write-host "Success"
exit 0

With any custom script installs or uninstalls, a custom detection script is necessary. The first step is to grab the product names. Just like before, it’s a list of strings. So they can do more than one. Then we grab all the products with our cim instance and win32_product. Then we loop through each product name and see if the product exists still. If it does, we exit with a 1. This basically says, I failed! Intune needs a string and an exit code of 0 to be successful. The exit of 1 without the string ends the script and without that string, intune assumes failure. However, if we go through them all, and none trigger the exit, then we are safe to exit with a 0 and the beautiful word success.

Building it out in Intune.

Building the IntuneWin File

The first thing you will need to do is save your script into a folder and then download the WinIntuneApp, aka, Win32 Prep Tool, to package up the powershell script. Unpackage this tool and start up your command prompt. The application will guide you through the process of setting up a intunewin app.

General Uninstaller for Intune
  1. Please specify the source folder: This is the folder that will have your script inside of it. If you wanted to create something more complex, this part would change your way of deployment. Future blog post coming.
  2. Please Specify the setup file: This is going to be the powershell name. General-Uninstall.ps1
  3. please specify the output folder: This is the folder that the intunewin file will be dropped.
  4. Do you want to specify catalog folder (Y/N)? This one is for more advanced packages. We can say no to this option for this setup.

Setting Up Intune for Your Uninstaller

Now we have the IntuneWin file. It’s time to setup the intune Deployment. This is where you will be able to add things like the productname to our General Uninstaller for Intune.

  • Navigate to Endpoint Manager
  • Click Apps
  • Click Windows
  • Click Add
  • Click the Select App Package File.
  • Add the General-Uninstall.IntuneWin file.
  • Click ok
  • Change the Name
  • Click the edit Description and add a detailed description for other users. Make sure to provide instructions on what to do with the detection script.
  • The publisher can be your company or in my case self.
  • The gategory is going to be computer management as it is a general uninstaller.
  • Feel free to add any additional information. Link this blog post if you wish for the information URL.
  • Click Next when finished.

The next screen is programing.

  • Install command:
PowerShell.exe -ExecutionPolicy Bypass -File .\General-Uninstall.ps1 -ProductName "*Product Name*"
  • The Uninstall command can be as simple as a removal file.
  • Device Restart Behavior: Determine behavior based on return codes
  • Return Codes: Remember that unique exit code we had in the script. This is where you would place that code. I have it as 1212 is a success.

The next screen the requirement screen. We can do a lot with this screen, but we don’t need to here.

  • Operating System Architecture:
    • 32
    • 64
  • Minimum Operating System: Windows 10 1607.

Now we need to setup the custom detection.

  • Select User A custom Detection Script
  • Validate your product names to be uninstalled.
  • Upload and click next.
  • Accept the defaults for Dependencies and Supersedences.

The final screen is where you are able to assign the script to people. There are three sections. Required, aviable for enrolled devices and uninstall. This is where you will select who is going to get what.

Testing, Monitoring, and deployment

The assignment area is where you assign the script to who you want. This is very important. Here is where you would want to test the users. Have a test group and apply it first. H

  • Deploy the uninstall app to the test device group.
  • Monitor the Intune deployment status for the app to ensure successful deployment to devices/users.
  • Test if the application is still on a target computer. This can be done with control pannel, powershell, and more options.
  • Redefine and correct any issues and restart the testing.
  • Deploy

What can we learn as a person today?

When was the last time you threw a rock? How about a rock in a lakes? The last time you did, did you notice the ripples? Just like a deployment like this can cause ripples in your company, removing things from your life can cause just as many ripples in yourself. Make sure you are ready to let go of that thing you are holding onto. It’s always a good idea to test it out, or have a support group to help you. Those ripples can do some damage. So be ready to Uninstall parts of your life before you do it.

Additional Reading

WordPress in Docker with LDAP

WordPress in Docker with LDAP

A few weeks ago, we built WordPress in Docker. Today I want to go deeper into the world of docker. We will be working with a single WordPress instance, but we will be able to expand this setup beyond what is currently there over time. Unlike last time we will be self-containerizing everything and adding plugins along with the LDAP php which doesn’t natively come with the WordPress:Latest image. It’s time to build an WordPress in Docker with LDAP.

Docker Files

As we all know docker uses compose.yml files for it’s base configuration. This file processes the requested image based on the instructions in the compose. Last time we saw that we could mount the wp-content to our local file system to edit accordingly. The compose handles that. This time we are going about it a little differently. The compose file handles the configuration of basic items like mounting, volumes, networks, and more. However, it can’t really do much in the line of editing a docker image or adding to it. The compose file has the ability to call upon a build command.

services:
  sitename_wp:
    build:
      context: .
      dockerfile: dockerfile

The build is always within the service that you want to work with. the Context here is the path of the build. This is useful if you have the build files somewhere else like a share. Then the dockerfile will be the name of the build. I kept it simple and went with docker file. This means there are now two files. the docker-compose.yml and this dockerfile.

What are the Dockerfile

The docker file takes an image and builds it out. It has some limitations. The dockerfile can add additional layers that adds to the over all size of the image. Non-persistence is the next problem, by it’s ephemeral nature, it disappears after it’s first use. The file can only do a single threaded execution. Thus, it can’t handle multiple things at once. It’s very liner in it’s nature. If than, and other structures are not present in the docker file. This makes it hard for it to be a programing language. There are limits to versioning.

The docker file cannot work with networking or ports. There is no user management inside the dockerfile process. Complexity is a big problem with these files as the more complex, the harder it is to maintain. Never handle passwords inside the dockerfile. The docker file can’t handle environmental variables. The thing that hit me the hardest, limited apt-get/yum commands. Build context is important as dockerfiles can slow down performance. Finally, dockerfile’s may not work on all hosts.

With those items out of the way, docker files can do a lot of other good things like layering additional items to a docker image. The container treats these files as root and runs them during the build. This means you can install programs, move things around and more. It’s time to look at our dockerfile for our WordPress in Docker with LDAP.

The Dockerfile

# Use the official WordPress image as a parent image
FROM wordpress:latest

# Update package list and install dependencies
RUN apt-get update && \
    apt-get install -y \
        git \
        nano \
        wget \
        libldap2-dev

# Configure and install PHP extensions
RUN docker-php-ext-configure ldap --with-libdir=lib/x86_64-linux-gnu/ && \
    docker-php-ext-install ldap

# Clean up
RUN rm -rf /var/lib/apt/lists/*

# Clone the authLdap plugin from GitHub
RUN git clone https://github.com/heiglandreas/authLdap.git /var/www/html/wp-content/plugins/authLdap

# Add custom PHP configuration
RUN echo 'file_uploads = On\n\
memory_limit = 8000M\n\
upload_max_filesize = 8000M\n\
post_max_size = 9000M\n\
max_execution_time = 600' > /usr/local/etc/php/conf.d/uploads.ini

The Breakdown

Right off the bat, our FROM calls down the wordpress:latest image. This is the image we will be using. This is our base layer. Then we want to RUN our first command. Run commands like to have the same commands. Remember, every command is ran as the container’s root. The first RUN command will contain two commands. The APT-Get Update and the install. We are installing git, this way we can grab a plugin, nano, so we can edit files, wget, for future use and our php ldap.

apt-get update &&\
apt-get install -y git nano wget libldap2-dev

Please notice the && \. The \ means to treat the next line as part of this command. The && means and. The && allows you to run mulitple commands on the same line. Since each RUN is a single line, this is very important. The libldap2-dev is our ldap plugin for php. Our next RUN edits the docker php extension.

The Run Commands

RUN docker-php-ext-configure ldap --with-libdir=lib/x86_64-linux-gnu/ && \
docker-php-ext-install ldap

docker-php-ext- * is a built in scripts to our WordPress image. We tell the configure where our new libraries are located for the PHP. Then we tell php to install the ldap plugin. After we have it installed, we need to do some clean up with the next RUN command.

rm -rf /var/lib/apt/lists/*

At this point, we have WordPress in Docker with LDAP php modules. Now I want a cheap easy to use plugin for the ldap. I like the authldap plugin. We will use the git command that we installed above and clone the repo for this plugin. Then drop that lpugin into the WordPress plugin folder. This is our next RUN command.

git clone https://github.com/heiglandreas/authLdap.git /var/www/html/wp-content/plugins/authLdap

In our previous blog, we used a printf command to make a upload.ini file. Well, we don’t need that. You can do this here. We trigger our final RUN command. This time it will be echo. Echo just says stuff. So we echo all the PHP settings into our uploads.ini within the image.

# Add custom PHP configuration
RUN echo 'file_uploads = On\n\
memory_limit = 8000M\n\
upload_max_filesize = 8000M\n\
post_max_size = 9000M\n\
max_execution_time = 600' > /usr/local/etc/php/conf.d/uploads.ini

Docker Compose

Now we have our Dockerfile built out. It’s time to build out our new docker compose file. Here is the compose file for you to read.

version: '3.8'

services:
  sitename_wp:
    build:
      context: .
      dockerfile: dockerfile
    ports:
      - "8881:80"
      - "8882:443"
    environment:
      WORDPRESS_DB_HOST: sitename_db:3306
      WORDPRESS_DB_USER: ${WORDPRESS_DB_USER}
      WORDPRESS_DB_PASSWORD: ${WORDPRESS_DB_PASSWORD}
      WORDPRESS_DB_NAME: ${MYSQL_DATABASE}
      WORDPRESS_AUTH_KEY: ${WORDPRESS_AUTH_KEY}
      WORDPRESS_SECURE_AUTH_KEY: ${WORDPRESS_SECURE_AUTH_KEY}
      WORDPRESS_LOGGED_IN_KEY: ${WORDPRESS_LOGGED_IN_KEY}
      WORDPRESS_NONCE_KEY: ${WORDPRESS_NONCE_KEY}
      WORDPRESS_AUTH_SALT: ${WORDPRESS_AUTH_SALT}
      WORDPRESS_SECURE_AUTH_SALT: ${WORDPRESS_SECURE_AUTH_SALT}
      WORDPRESS_LOGGED_IN_SALT: ${WORDPRESS_LOGGED_IN_SALT}
      WORDPRESS_NONCE_SALT: ${WORDPRESS_NONCE_SALT}
    volumes:
      - sitename_wp_data:/var/www/html
    depends_on:
      - sitename_db
    networks:
      - sitename_net_wp

  sitename_db:
    image: mysql:5.7
    volumes:
      - sitename_wp_db:/var/lib/mysql
    environment:
      MYSQL_ROOT_PASSWORD: ${MYSQL_ROOT_PASSWORD}
      MYSQL_DATABASE: ${MYSQL_DATABASE}
      MYSQL_USER: ${MYSQL_USER}
      MYSQL_PASSWORD: ${MYSQL_PASSWORD}
    networks:
      - sitename_net_wp

networks:
  sitename_net_wp:
    driver: bridge

volumes:
  sitename_wp_data:
  sitename_wp_db:

The WordPress in Docker with LDAP breakdown

First thing first, Notice everywhere you see the name “sitename”. To use this docker correctly, one must replace that information. This will allow you to build multiple sites within their own containers, networks and more. As stated before, the first thing we come accross is the build area. This is where we tell teh system where our dockerfile lives. Context is the path to the file in question and dockerfile is the file above.

Next, is the ports. We are working with port 8881:80. This is where you choose the ports that you want. The first number is the port your system will reach out to, the second number is the port that your container will understand. Our SSL port is 8882 which is the standard 443 on the containers side.

ports:
      - "8881:80"
      - "8882:443"

Next are the enviromental veriables. If you notice, some of the items have ${codename} instead of data. These are veriables that will pull the data externally. This approach prevents embedding the codes inside the compose file. The volume is the next part of this code. Instead of giving a physical location, we are giving it a volume. Which we will declare later. Next, we state the wordpress page is dependant on the mysql image. Finally, we select a network to tie this container to. The process is the same for the database side.

Finally, we declare our network with the networks. This network will have it’s own unique name, as you see the sitename is within the network name. We set this network to bridge, allowing access from the outside world. Finally we declare our volumes as well.

The hidden enviromental file

The next file is the enviromental file. For every ${codename} inside the docker, we need an envorimental veriable to match it. Some special notes about the salts for WordPress. The unique symbols, such as a $ or an =, in the code injection cause the docker to break down. It is wise to use numbers and letters only. Here is an example:

WORDPRESS_DB_USER=sitename_us_wp_user
WORDPRESS_DB_PASSWORD=iamalooserdog
MYSQL_ROOT_PASSWORD=passwordsareforloosers
MYSQL_DATABASE=sitename_us_wp_db
MYSQL_USER=sitename_us_wp_user
MYSQL_PASSWORD=iamalooserdog
WORDPRESS_AUTH_KEY=4OHEG7ZKzXd9ysh5lr1gR66UPqNEmCtI5jjYouudEBrUCMtZiS1WVJtyxswfnlMG
WORDPRESS_SECURE_AUTH_KEY=m0QxQAvoTjk6jzVfOa8DexRyjAxRWoyq08h1fduVSHW0z2o4NU2q7SjKoUvC3cJz
WORDPRESS_LOGGED_IN_KEY=9LxfBFJ5HyAtbrzb0eAxFG3d9DNkSzODHmPaY6kKIsSQDiVvbkw0tC71J98mDdWe
WORDPRESS_NONCE_KEY=kKMXJdUTY0b6xZy0bLW9YALpuNHcZfow6lDZbRqqlaNPmsLQq45RhKdCNPt34fai
WORDPRESS_AUTH_SALT=IFt5xLir4ozifs9v8rsKTxZBFCNzVWHrpPZe8uG0CtZWTqEBhh9XLqya4lBIi9dQ
WORDPRESS_SECURE_AUTH_SALT=DjkPBxGCJ14XQP7KB3gCCvCjo8Uz0dq8pUjPB7EBFDR286XKOkdolPFihiaIWqlG
WORDPRESS_LOGGED_IN_SALT=aNYWF5nlIVWnOP1Zr1fNrYdlo2qFjQxZey0CW43T7AUNmauAweky3jyNoDYIhBgZ
WORDPRESS_NONCE_SALT=I513no4bd5DtHmBYydhwvFtHXDvtpWRmeFfBmtaWDVPI3CVHLZs1Q8P3WtsnYYx0

As always, grab your salts from an offical source if you can make it work, Here is the WordPress Official source site. You can also use powershell to give you a single password, take a look here. Of course, replace everything in this file with your own passwords you wish. If you have the scripting knowledge, you can auto-generate much of this.

Bring Docker to Life

Now we have all of our files created. It’s finally time to bring our creation to life. Run the following command:

docker compose up -d

If you notice, there are additional information that appears. The dockerfile will run and you can watch it as it runs. if there are errors, you will see them here. Often times, the erros will be syntex issues. Docker is really good at showing you what is wrong. So, read the errors and try finding the answer online.

What can we learn as a person today?

Men are born soft and supple; dead, they are stiff and hard. Plants are born tender and pliant; dead, they are brittle and dry. Thus whoever is stiff and inflexible is a disciple of death. Whoever is soft and yielding is a disciple of life. The hard and stiff will be broken. The soft and supple will prevail<span class="su-quote-cite">Lao Tzu</span>

In seeking assistance from forums like the sysadmin subreddit or Discord channels, I often encounter rigid advice, with people insisting on a singular approach. This rigidity echoes Lao Tzu’s words: “Men are born soft and supple; dead, they are stiff and hard… The hard and stiff will be broken. The soft and supple will prevail.” In professional settings, flexibility and adaptability are crucial. Entering a new company with an open mindset, ready to consider various methods, enables us to navigate around potential obstacles effectively. Conversely, inflexibility in our career, adhering strictly to one method, risks stagnation and failure. Embracing adaptability is not just about avoiding pitfalls; it’s about thriving amidst change. Lao Tzu’s wisdom reminds us that being pliant and receptive in our careers, much like the living beings he describes, leads to resilience and success.

Docker and WordPress

Docker and WordPress

It’s time to build on our Docker knowledge. WordPress is a powerful web platform that a large part of the internet is built on. This site is built on WordPress. Whenever I am working on a site for a friend, I will build myself WordPress and then create their site there in my test environment. When I get it the way I want it, I move it and destroy the original. The best way to destroy the original is to wipe it from existence. This is where Docker and WordPress are friends.

Docker and WordPress

This method will allow you to have multiple WordPress sites with your docker image. The reason we want to be able to do this is because this allows us to test between site actions and more. It’s one of those amazing little tools that saves so much time. Before that, we want to do some basic things to get everything setup. The first thing is the networking. We want to build a network in docker for our WordPress sites. We do this outside of the compose because making if/then statements in a compose is a mess. This also allows you to have multiple networks and so on and so forth. We do this with the command “Docker Network Create”. Of course, you want to be using the docker user or sudo user.

docker network create dockerwp

Docker Compose File

Now we have our docker network built, we need to build our compose file. Inside the folder you keep all of your dockers, I Suggest making a new folder called wordpress and moving into that folder. Then create a docker-compose file using the nano command.

mkdir wordpress
cd wordpress
nano docker-compose.yml

Next you will want to copy and past the docker compose below into it.

version: "3.8"

services:
  sitename-db:
    image: mysql:latest
    volumes:
      - ./sitename_db/data:/var/lib/mysql
    restart: always
    environment:
      MYSQL_ROOT_PASSWORD: AmazingPasswordOfAwesomeness
      MYSQL_DATABASE: sitename_wp_db
      MYSQL_USER: sitename_wp_user
      MYSQL_PASSWORD: AnotherAmazingPassword

  sitename-wp:
    image: wordpress:latest
    depends_on:
      - site1-db
    volumes:
      - ./sitename_wp/wp-content:/var/www/html/wp-content
      - ./sitename_wp/uploads.ini:/user/local/etc/php/conf.d/uploads.ini
      # Add other files or folders that you want to override here e.g. stylesheets
    ports:
      - "8880:80"
    restart: always
    environment:
      WORDPRESS_DB_HOST: sitename-db:3306
      WORDPRESS_DB_NAME: sitename_wp_db
      WORDPRESS_DB_USER: sitename_wp_user
      WORDPRESS_DB_PASSWORD: AnotherAmazingPassword

networks:
	dockerwp:
	  name: dockerwp
	  external: true

From there, you can run the command “docker compose up -d” to create the wordpress page with the default settings. I don’t suggest it, but you can. How can you use this docker compose? Firstly, replace wherever you see “sitename” with the sites name you want. If you want more than one, you can copy the db and wordpress sections over and over again. Each time replacing the site name with something different. Make sure to change those amazing passwords.

How does this compose work?

This docker compose works by creating individual worlds for each site. The word sitename allows you to rename everything the way you want. So if you wanted therandomadmin_com-db, that can happen. if you want therandomadmin_org-db that can happen to. Each one can have it’s own name. This is what splits them apart. The network they share allows them to talk with each other and back out again. Uploads.ini allows the sites to have their own custom upload counts. I will go over that in just a minute. Just imagine them as little cups with two unique coins. As long as they are named the same they can talk to each other. If you wanted to, you can take it a step farther and make a new network for each compose. However, that can get messy quick trying to herd all of those networks into one place.

Next steps

The volumes part of the compose services creates folders. Each folder is important because it holds the content for that container. Notice in the wordpress volumes. You will see a ./sitename_wp/uploads.ini. This is very important as it controls how much data can be uploaded. Each site has it’s own. Thus, you can use the command below to create a simple file in each container. To activate those files, restart the container.

printf "file_uploads = On\nmemory_limit = 64M\nupload_max_filesize = 64M\npost_max_size = 64M\nmax_execution_time = 600" > ~/uploads.ini

This command will create the ini file that tells the system how much you can upload. I have it set to 64 megabtyes, but you can set it to whatever you want. By default, the size limitation is 2mb. Which is extremely small for now day images.

Finally, you can use the nginx reverse proxy system to assign the ssl to each site as you see fit. I personally don’t do this as I don’t expose the site to the outside world, but you can do so. The instructions were covered in the previous blog about ladder. Believe it or not, that’s it. The next few steps would be to go to the site’s ip or hostname whichever you choose and set up your wordpress like normal.

What can we learn as a person today?

Recently I went to a Tech networking event where I met multiple new and unique people. I enjoyed every minute of talking about tech with each of them. While talking to them, I learned of new ways to use my dormant skills. Things like body language, mental health knowledge, and even down to my cooking was improved. We talked about things like IT, AI, and the color of the sky in some cases. It was a pleasure. Later I was the one helping others on a local discord server. We talked about the day and things we needed.

What spoke to me while working on this blog post was each WordPress has it’s own container and it’s own world, but the network is the same. This allows the WordPress installs to talk with each other and share items easliy. That’s the same way we are as humans. We are all unique in our own ways. I can be someone who enjoys reading a good white paper about mind bind while someone else can enjoy reading a good book at how pepsi cola is made. We are all different. What we have in common is our networks.

Without our networks, we can’t go far. Imagine the WordPress hosted on it’s own network, but that network can’t leave your lab. Would it be useful to the outside world? How about this site? What if I locked it down so only 1 other IP address could read it. This blog wouldn’t be helpful to you. This is how our networking is. If we lock down ourselves to only one group of people, we can’t grow and they can’t grow. This is often times how cults are made. They lock themselves down to only themselves and whoever they can recruit.

Think about it

As you go throughout your week this week, think about your networks. If you go to church, that’s a network, if you go to school, that’s a network. How about your discord friends? That’s a network as well. Each place has it’s own network, even if that place is temporary like a store. What can you bring to those networks, and what can you learn from those networks?

Ladder With Docker

Ladder With Docker

The other day I was searching for a piece of code for work. One of the links I clicked was geo locked to the EU only. Which threw me off. I didn’t have a VPN on the computer. So what do you do? We use a web proxy. Last week we talked about a reverse proxy. A web proxy is a website that you can use to look like you are from that site’s hosts. Most of the bigger sites will block you from using a web proxy, but simple sites have no idea. Everywall built a simple web proxy that we can use in docker. This is where we get to use Ladder with Docker.

What is Ladder

Ladder is a web proxy. So, when you install this inside your homelab, or wherever you can with docker, you can enter a url into the link and it will take you there from that machine. The example above, my ladder install had to be on a machine in the EU for me to access the site. Fun part is, I had a box in the EU to work with. A web proxy works by being in the middle. When you enter your url you wish to go to, the web proxy acts like the browser and sends the request from itself. Then it brings that information back to you and displays it. Ladder appends the link to the back of it’s url. This way you can edit the url if need be. So, if you go to “Therandomadmin.com” while using your ladder, it will think you are coming from the ladder instead of your browser. You could be at work, using your ladder to view the rest of the world. Thus, you can see things from your home. Yes, this can get around filters.

Ladder With Docker

How Do you install Ladder

I have Ladder with Docker. First thing first, always check out the official documentation, you can do that here. We will be using our reverse proxy from our previous blog post, here. Docker is going to be our go to here. First, we need to log into our server using ssh. Once you get into your server, navigate to where you are holding all your docker folders. Next, you will need to use the mkdir command and make a folder called ladder. Then CD into it.

mkdir ladder
cd ladder

Now, inside the “ladder” folder, we want to create a compose file. Now we are in the folder. It’s time to build the compose file by using the nano command. We want to build a “docker-compose.yml” file.

nano docker-compose.yml

You will be brought into the editor where you can write the docker file. You can simply copy the information below and past it into the text file.

version: '3'
services:
  ladder:
    image: ghcr.io/everywall/ladder:latest
    container_name: ladder
    restart: unless-stopped
    environment:
      - PORT=8080
      - RULESET=/app/ruleset.yaml
    ports:
      - "8080:8080"
    volumes:
      - ./ruleset.yaml:/app/ruleset.yaml
      - ./handlers/form.html:/app/form.html

To save, all you have to do is press ctrl and x and follow the prompts.

Breakdown of the Yml

Like before, we are starting off with version 3 of docker. Our service is called ladder, and the image is from ghcr.io. Everywall is the company and ladder is the image name. We are grabbing the latest. The container’s name will be ladder. We will set the restart to always restart unless we stop it. This will allow it to survive a reboot. Next, we will be using the environmental flags. We want to use our port 8080 and have our ruleset accordingly. Later we can build a unique rule set. Then we want to select our ports. The system port will be 8080, we can change this to whatever we want. The image port is 8080. Finally, we build our volume. We need a /app/ruleset.yaml and a /app/form.html. Ladder has additional options, and you can find that information from the official documentation. Of course, you will need to start the Image. Do so by using the docker compose commands with the d flag.

docker-compose up -d
 
# If using docker-compose-plugin
docker compose up -d

Now navigate to your http:<ip address>:8080 and confirm the site is up and running.

Pointing your Reverse Proxy to your Ladder with Docker

Now, we want to point our reverse proxy we made in the last post to our ladder. Lets follow these steps:

  1. Navigate to your reverse proxy and log in
  2. Click On the dashboard button if you not already brought to it.
  3. Click “Proxy Hosts”
  4. Click “Add Proxy Host”
  5. Enter your name for the ladder. Remember to have the DNS already setup for this.
  6. Enter the IP address you wish to forward to.
  7. Enter your port, in this case it will be 8080
  8. Select “Websocket support”

If you want to have a custom SSL for this site, Complete by doing the next.

  1. Click SSL
  2. Under SSL Certificate, select request a new SSL Certificate.
  3. Enter your email address and check the agree to the let’s encrypt terms and service.
  4. Click Save

If your DNS is pointing, and your Ladder is working, your system will be assigned a SSL. Now, your ladder is ready to go. I hope you enjoy.

What can we learn as a person today?

As you see in this post, it builds on the last post. Most of our lives have been built on something from our past. I know powershell really well. Now imagine, if I suddenly couldn’t read. All those skills would be gone. Our minds are built on stages of knowledge and skill sets. Inside the brain, there is a network that is more complex then the world’s road systems. If you are studying something that that really has no usefulness right this minute, it may a few years down the road because Knowledge builds upon itself. I didn’t know why I was studying virtual hosts for redhat servers back in the day. Now you are reading my blog. Sometimes the knowledge is wasted space or damaging. Those are still there, but they are like the awkward emails, they go to trash at some point. As a person, you can choose to build on your skills and grow any way you choose.

Reverse Proxy on Docker

Reverse Proxy on Docker

Over the past year, I have started rebuliding my home lab. One thing about a home lab is you want very little entries into your network. I split off my home lab from my main network using a pfsense firewall. The home network only has 2 ports open on it. That’s 80 and 443. Everything runs through those ports. The whole lab is based on docker. This way I can run mulitple objects on different ports. For example, I have 3 wordpress living on one server. These are for development tests and so on and so forth. The question that needs to be answered is how do I get to those services outside the network? This is where a Reverse Proxy on Docker comes into play.

What is a Reverse Proxy?

Imagine walking into a massive building with hundreds of offices. There are no maps on the wall. The doors have no names and there is no glass to look through each door. All that lives on each door is a number. So, how would you find anything in that building? Well, there is a receiptionist at the front with a security guard. If you ask the receiptionist to see Dr Ross Geller, they will look at their charts. If Dr Ross Geller doesn’t work there. They will look up at you and say nothing. You get no feed back and you can go past that point without the security gaurd’s keys. Even if you got the keys, the lights are off and you need the recipionists keys for the lights.

Now, if Dr Ross Geller is there, She will grab the security guard and whisper the room number into their ear. Then, the guard will hand cuff you to himself and walk you to the office in the dark. Once at the door, he will pat you down for common weapons then open the door for you and you can walk into the meeting with Dr Ross Geller. Remember to PIVOT!

This is how a reverse proxy works. They are the gate keepers of the network. When something comes in on port 80 or 443, the reverse proxy will that the DNS name and check it’s register. If it has the DNS name, it then forwards you to the local port. It doesn’t tell the user about any other active ports. Many proxies will block common exploits and even work with your SSLs.

Ngnix Reverse Proxy Manager

We are going to be working with Ngnix Reverse Proxy Manager. Ngnix Reverse Proxy Manager is a docker friendly reverse proxy that gives you a beautiful ui to work with. Along with connecting to Let’s Encrypt to give you free ssls, it also allows multiple users, redirects, custom 404 pages, streaming services, and more. The Graphical interface helps keep management sustainable.

Install on Docker

We are going to assume you have docker installed on your system. If you do not, you can read on how to do it here and you can learn how to install docker compose here. Nginx proxy Manager has their quick guide that you can read here. This next steps below will match up to this documentation with a few small changes.

The First step is to setup your docker folders. I am in the camp of using a folder for each service. After logging in with SSH we want to make a directory using the mkdir command.

mkdir ReverseProxyManager
cd ReverseProxyManager

Now inside the “ReverseProxyManager” folder we want to create a compose file. On Ubuntu, my server of choice for this, we will use the built in editor, nano. I am a nano fan, some like vi, some like vim. That is a debate for other people. I suggest using what you have access to. So run the nano command and build a “docker-compose.yml” file.

nano docker-compose.yml

This will drop you into a text file. Copy the blow information and past it into the text file.

version: "3.8"

services:
  proxy-manager:
    image: 'jc21/nginx-proxy-manager'
    restart: unless-stopped
    ports:
      - '80:80'
      - '81:81'
      - '443:443'
    volumes:
      - ./data:/data
      - ./letsencrypt:/etc/letsencrypt
    environment:
      DB_SQLITE_FILE: "/data/database.sqlite"
      DISABLE_IPV6: 'true'

To save, all you have to do is press ctrl and x and follow the prompts.

Breakdown of the Yml

Here we ahve the service manager making a service called proxy-manager. We are using the offical Reverse proxy for Docker through jc21. We tell it to continue running until someone stops it. Then we tell it the ports we want. Here we want 80, 81, and 443. 81 will be your management port and should only be accessiable internally. The other two will be for the data coming in. Next we have the volumes. We need a data folder. Using ./ to indicate the folder this yml file lives in. We also want a place for the lets encrypt. Finally we are using enviromental tags. Having a sqlite server allows you to do more than without it. Finally, I disable IPv6 because I don’t use IPv6, yet. I will one day.

Starting The Docker

The next step is to start the docker. There is a way to test by using docker-compose up, but it freezes your terminal. adding the -d will make what the docker-compose up perment and give you back your terminal.

docker-compose up -d

# If using docker-compose-plugin
docker compose up -d

now the stack is up and running. The next step is to navigate to the ip address of the server. you can use the ip a to grab the ip address from the server. When you access the Url, you will see the below. Enter the below information.

  • URL: http://<serverIPAdddress>:81
  • Email: admin@example.com
  • Password: changeme

It will prompt you to change your password. Make sure you do that.

What can we learn as a person from Reverse Proxies?

In our lives, we have many different parts of ourselves. What’s interesting about these parts is we don’t know all of them. Imagine the reciptionist from our example above being your sub countinous mind. It knows all the parts of you and can direct you to those parts. But to get to the sub countinous mind, you have to go through the body. Imagine trying to walk into a building and the door handle says push, but every time you push it, it doesn’t open. Many people get mad and give up. The truth behind the door is a pull. Our brains don’t like being pushed, instead they like us to sit and pull them to us. Calm brings the sub countinous to the surface as it changes the state of our minds to allow the sub countinous to communicate back. Once that is achived, you will have access to some of the darkest parts of your mind.

Almost every religion has some reference to being still. In our busy world, being still is like dealing with an alien language. Being still allows you to communicate with your body. It allows you to know who you are and be able to sit with that knowledge. Without that stillness, we end up burning ourselves on our internal fire. This is why vacation times are so important in companies. Companies who give poor vaction time sees a higher turn over because their people don’t have a chance to commucate with themselves and enjoy thierselves.

Over the next week, take moments where you can be still with your thoughts and become aware of yourself. You may see that your internal proxy is hiding some dark secreats that are leaking out in verious of way.